焊接保护气的性质及组分对焊接质量具有较大影响,常见焊接保护气体性质不同,对焊接速度、焊缝熔深、电弧稳定性影响不同,因此在实际生产过程中,应综合考虑多种影响因素,选取合适的保护气体,为焊接质量提供可靠保障。
1、引言焊接保护气主要功能是保护待焊金属免受其他气体和杂质的污染,保障焊接产品的质量;另一方面焊接保护气的性能对焊接速度、焊缝熔深、成形、焊接烟尘、电弧稳定性等产生相应影响。焊接保护气按照气体活性程度可以分为惰性气体(如:He)和非惰性气体(如:CO₂);按照组元成分可以分为单一组元气体(如:GTAW-使用纯Ar作为保护气体)和多元混合气体(如:GMAW-使用纯75%Ar+25%CO₂作为保护气体);按照气体氧化性强弱可以分为强氧化性气体、弱氧化性气体、还原性气体、中性气体;此外,除气体活性程度、组元成分、氧化倾向之外,保护气体的电离能和导热系数也是选择保护气体重要依据。
2、普通碳钢(结构钢)GMAW保护气体选用对于普通碳钢,或者用于生产钢结构的结构钢,如果不是对焊接质量和焊接外观有严格要求,通常采用CO₂作为保护气体,此时又称CO₂气体保护焊,该方法具有生产效率高、焊接质量好、成本低、实用性强等优点。
对于焊接质量较高的场合,需要进行无损检测或压力试验时,可用Ar+CO₂作为保护气体,保护气体的组份变化可以影响焊接电弧空间形态、电弧能量密度、熔滴过渡方式、焊丝熔化特征及焊接过程飞溅等,还可以改善焊接过程电弧及过渡的稳定性及液态金属与熔池的润湿情况,改善焊缝成型,降低飞溅,消除和防止缺陷的产生,提高焊缝接头的性能。
金鲁鼎碳钢管道二保自动焊
3、不锈钢GMAW保护气体选用不锈钢GMAW中焊接气体的选用,不但要根据不锈钢的类型及焊接位置等因素,同时也必须考虑背部成型、焊接组合、熔滴过渡形式等其他因素,才能获得最优的焊接效果。
用纯氩只能适合TIG焊接不锈钢,而不能适用于MIG焊接不锈钢。因为纯氩气体下熔化极气体保护焊时,不锈钢的熔滴和熔池的表面张力较大,熔池液态金属流动性很差,焊缝表面无法铺展润湿,焊道成形较差。
当在氩气中加入1-2%氧,不锈钢的熔滴和熔池的表面张力降低,熔池液态金属流动性增强,提高了焊缝表面的铺展润湿性,焊缝熔深熔宽适中,焊道成形美观。0-1%适合于奥氏体不锈钢,0-2%适合于铁素体不锈钢;0-2%较比0-1%熔池具有更好的流动性,适合于不锈钢焊丝的喷射过渡及脉冲过渡,适合于不锈钢焊件的平焊及平角焊。
当在氩气中加入2-5%CO₂适合于不锈钢管道的TIG打底焊+MAG填充盖面焊的组合工艺,全位置焊接,短路过渡,焊缝平整美观。
三元混合气体优点更为突出,如组分为Ar+5%CO₂+2%O₂的三元混合气体,电弧集中性强,焊缝单面焊双面成型好,适合于技术要求较高的不锈钢焊接;组分为Ar+He+CO₂的混合气体,其中氦气可增加焊缝的熔深,提高焊接速度,减少焊件的变形量;组分为Ar+CO₂+N2的混合气体是欧美开发的新工艺,其中氮气可增加焊缝的熔深和熔宽。
金鲁鼎不锈钢管道氩弧自动焊
4、铝合金GMAW保护气体选用对于适合焊接的铝合金,GMAW中通常采用Ar作为保护气,值得注意的是铝合金对焊接气体的纯度有较高要求,如果保护气体达不到,焊缝两侧则会出现黑色氧化物,影响焊接外观质量。如果想要得到较大地焊接熔深和焊接速度,则可以在Ar中加入一定比例的He。由于He的传热系数大,在相同电弧长度下,电弧电压比用Ar时高。电弧温度高,母材热输入大,熔化速度较高。适于焊接厚铝板,可增大熔深,减少气孔,提高生产效率。但如加入He的比例过大,则飞溅较多。
金鲁鼎铝合金管道自动焊
5、其它金属合金GMAW保护气体选用对于铜及铜合金GMAW除了使用纯Ar作为焊接保护气外,可以在Ar气中加入一定比例的氮气,可以降低生产成本,同样也能起到保护作用,但有一定飞溅和烟雾,成形较差。对于镍及镍合金GMAW除了使用纯Ar和Ar+He作为焊接保护气外,也可以在Ar气中加入少量的氢气,同样可以提高焊接效率。对于钛及钛合金GMAW,由于Ti与N、H、O都具有较强的结核性,因此只能使用纯Ar和Ar+He作为焊接保护气。
声明
本网站所发布文章仅为学习交流之用,无商业用途,向原作者致敬。因某些文章转载多次无法找到原作者在此致歉,若有侵权请联系小编,我们将及时删文或者注明出处,感谢您的支持!